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The Coulomb barrier prevents an easy fusion between charged particles: only a 
combination of high temperatures, high densities and long timescales may lead 
to a substantial amount of fusion. 

Evidence

Even the fusion of the lightest nuclei, protons, requires 

                              T>several 106 K
                        >several grams / cm3

to burn a significant amount of nuclei on a timescale 
shorter than the age of the Universe

These conditions are met only in stars
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r
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Equation of continuity:

A star is formed by a gas cloud that contracts under its own gravity and 
whose luminosity is produced in its interior

In many cases the contraction occurs on “long” timescales because matter naturally settles on a quasi equilibrium 
configuration in which the various forces acting on each element of matter tend to counterbalance each other:
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Let us firstly consider a perfect gas; in this case we can write:

At this point we need an equation of state, i.e. a relation between pressure and density

E=
3
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NKT

P=NKT

P
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E Where u  represents the 
energy per unit mass
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u dm= −2 ∫
0
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u dm =  −2 Ei=
= Ei  <= total internal energy

Virial Theorem (perfect gas)



  

2 E i=0
Virial theorem (perfect gas)

ETOT=E i

∆Ω is negative! hence a contraction implies necessarily 
an increase of the internal energy Ei. However only 50% 
of the energy gained by the gravitational field remains 
locked in the star, the other 50% must be lost!

What does it mean?

Once again,   is negative!  Hence a contraction (<0) implies a reduction of the total energy.

E i=−
1
2


ETOT=−
1
2
 ETOT=

1
2


The requirement that some energy must be lost in a contraction introduces the idea that the contraction requires 
some finite timescale to occur, it cannot occur instantaneously. Since energy is basically lost through photons from 

the surface, this timescale is dictated by the efficiency of the outward photon flux. In other words no additional 
contraction may occur until the energy losses required by the virial theorem have been effectively lost!

E TOT=
1
2


What about the total energy of the system?

The system is more bound!
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In general we may write:

At this point we need an equation of state, i.e. a relation between pressure and density

P

=−1U Where  is the ratio of the specific heats at constant pressure CP and constant volume CV

dQ=dUP dV

 dQ
dT 

P

=CP= dU
dT 

P

P  dV
dT 

P

CP=CV
P
T  d lnV

d lnT 
P

P

=CP−CV T  d lnT

d lnV 
P

P

=CP−CV 

U
CV

=−1U

 dQ
dT 

V

= dU
dT 

V

=CV U=CV T
1 for a perfect gas

P

=CP−CV T  d lnT

d lnV 
P

For a monoatomic gas = 5/3 so that  we re - obtain 
P

=

5
3
−1U=

2
3

U
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0
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3−1U dm= 3−1 E i=0
Generalized Virial Theorem

E i=0=
4
3

is very “special” because in this case E i=−
All the energy gained by the gravitational field is stored in 
the star (as internal energy) and no energy is lost outward.

ETO T=E i=−=0 For =4/3 a contraction does not increase the 
binding energy but leaves ETOT constant!

Since the contraction does not require the ejection of any energy no “delay” is necessary for a 
further contraction to occur. This is an unstable situation that leads to the collapse of the structure



  

The second basic equation necessary to describe a stellar structure is 
the one that controls the energy transport through the star. 

Let us firstly assume that the energy is transported by radiation only:

The momentum (dq) transferred by a flux N of photons of frequency   per unit time is given by:

dq=N 
h
c
d r

dSdt

mean free path

Momentum per  photon

Mean number of interactions

photons

dr

N 

dq=−dPr dSd t=−
1
3
a dT4 dSd t=−

4
3
a T 3 dTdSd tBut, the momentum transferred may be also expressed 

as the variation of the radiation pressure:

=
L 

4 R2 c
drdSdt

By equating the two:

4
3
a T 3

dT
dr

=−
L 

4 R2 c

=
1
 

dT
dr

=−
3

16a c
  L

R2T 3

Opacity coefficient

2nd  basic equation 

Associated continuity equation:

dL
dM

==nu cg ra v−



  

dP
dr

=−
Gm

r 2

dM
dr

=4 r2


dT
dr

=−
3

16a c
 L

r2T 3

SUMMARIZING

The set of equations that describe the structure of a star is given by:

dL
dr

=4r 2


Hydrostatic equilibrium

Mass conservation

Energy transport (radiative case)

Energy conservation

+
Equation Of State,  i.e.  P (, T, c.c.)

Opacity coefficient,  i.e.   ( , T, c.c.)

Energy generation coefficient,  i.e.   (, T, c.c.)

The solution of this system of equations is very difficult and requires COMPUTERS!



  

but...

...we can try to be clever!



  

dP
dr

=−
Gm ρ

r 2

P
R
∝

Mρ

R2
P∝ TρP∝

Mρ
R

dM
dr

=4 rπ 2 ρ
M
R
∝R2 ρ R∝  M

 
1
3

P∝M
2
3 ρ

4
3

T 3

ρ
∝M 2}

Perfect gas

logT =K M 
1
3

log

Interesting!
Just the hydrostatic equilibrium + perfect gas imply 
that the centre of a star must evolve along a straight 

line in the Log(Tc)-Log(c) plane.

What else?

The constant k scales inversely with the mass, so 
that the density increases as the mass decreases 

(for each fixed T) 

M1>M2>M3
We found that stars naturally separate in two 

basic groups: stars less massive than a critical 
value enter the region of electron degeneracy 

while the more massive ones don't!
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dT
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=−
3

16 a c
kρL

r 2 T 3

T
R
∝

ρL

R2 T 3 T 4 R4∝ ML L∝M 3

What about the surface temperature of the star?

If we assume a black body: L=4 R2
 T eff

4

M 3∝R2 T eff
4

and also that 
the central temperature is roughly 

independent on the mass : R∝ M

T eff
4 ∝ M T eff ∝ M

1
4

10 MO

100 MO

When the radiation 
becomes important

L∝ M 2.2
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3 ρ
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Perfect gas

What about the lifetime of the stars?

10 MO

100 MO

When the radiation 
becomes important

L∝M 2.2

τ∝ E
L

τ∝ qM
L

τ∝ qM
M 3

≈
1
M 2

τ∝ qM
M 2.2

≈
1
M 1.2

When radiation contributes 
significantly to the EOS

dT
dr

=−
3

16 a c
kρL

r 2 T 3

T
R
∝

ρL

R2 T 3 T 4 R4∝ ML L∝M 3

}



  

We learned a lot of things up to now (without really solving any equation!)

the evolution of the core follows a straight line in the Log(Tc)-Log(c) plane 

hydrostatic equlibrium is “stable” because    (Cp/Cv) > 4/3

If the EOS is dominated by a perfect gas:

Star less massive than a critical value enter the region where degenerate electrons count

Star more massive than a critical value do not enter the region where degenerate 
electrons count (at least until the central temperature does not exceed a few billions of K)

The energy losses from the surface (L) scale as M3

Star less massive than a critical value enter the region where degenerate electrons count

The lifetime of a star (t) scales as M-2

Unfortunately this is not enough ... it's time to introduce CONVECTION
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T eddie

T 1

P1 P2

 dlnT 
dln P  adiabatic



  

T eddie

T 1

P1 P2

 dlnT 
dln P  adiabatic

T 2

 dlnT 

dln P  radiative



  

T eddie

T 1

P1 P2

 dlnT 
dln P  adiabatic

T 2

 dlnT 

dln P  radiative

mod dlnT 

dln P   radiative

mod dlnT 

dln P   adiabatic


T eddieT 2

 eddie 2

P∝ T =const

The buoyancy force f ≈−
g


 

 r
 r

is negative and pushes back the eddie



  

T eddie

T 1

P1 P2

 dlnT 
dln P  adiabatic

T 2
 dlnT 

dln P  radiative



  

T eddie

T 1

P1 P2

 dlnT 
dln P  adiabatic

T 2
 dlnT 

dln P  radiative
mod dlnT 

dln P   radiative

mod dlnT 
dln P   adiabatic


T eddie T 2

 eddie 2

The eddie is accelerated outward.
Large scale motions activate.

The buoyancy force f ≈−
g


 

 r
 r is now positive



  

T eddie

T 1

P1 P2

 dlnT 
dln P  adiabatic

T 2

T 2

Schwarzschild criterion!

 dlnT 

dln P  radiative

mod dlnT 

dln P   radiative

mod dlnT 

dln P   adiabatic


T eddieT 2

 eddie 2

P∝ T =const

mod dlnT 
dln P   radiative

mod dlnT 
dln P   adiabatic


T eddie T 2

 eddie 2

Convective 
motions

Both the temperature gradient and the mass extension of the 
convective regions are very difficult to compute properly and still 
constitute one of the major uncertainties in the stellar modelling.



  

Which are the basic consequences of the growth of convective motions?

Matter is mixed.

1st  side effect: new fuel pulled inward – products of burning pushed outward

2nd  side effect: change of the mean molecular weight in the whole convective region

The temperature gradient can't become steeper than the adiabatic 
one in most of the interior of a star; only in the outer region it can 
raise towards the radiative one because of the inefficiency of the 
eddies in carrying the energy.



  

At this point we are ready to follow the evolution of a star, but...

...first a “stupid” question...

Why should a star “evolve”? 
(i.e. change its structure as time goes by)

because...



  

...stars lose energy (e.g. from the surface: the Luminosity) 

that must be replaced in order to mantain the hydrostatic equilibrium!

Nuclear reactions (energy is extracted from the fusion of nuclei)

Side effect => mean molecular weight increases (P decreases)

Energy may be gained by either:

contraction (energy  is extracted from the gravitational field)

Side effect => the interior heats (Virial theorem)

and / or



  

Hydrostatic 
evolution

H-burning

He-burning

C-burning

Ne-burning
O-burning

Si-burning

Core collapse

Explosive nucleosynthesis

Bounce at nuclear densities
Formation of the shock wave

yields

Hydrodynamic 
evolution

T



  

Nuclear reaction rates

Let us define the cross section  ij of the nuclear 
reaction between the particles i and j, that has the 

exit channel k + l, as:
 i j=

n u m b erof rea c tio n s⋅ p artic lej −1
⋅s−1

flu xof p a rtic le si
cm2

The total number of reactions between the subset of 
particles i and j that have relative velocity v is given by: R ij  v =n i⋅v⋅n j ij  v  n u m ber⋅s−1⋅cm−3

Where ni and nj represent the number densities of the two nuclear species having relative velocity v.

If both the i and j components of the gas behave as an “ideal” 
gas, their velocity distribution is Maxwellian.  As a consequence 

also their relative velocity distribution is Maxwellian :

Since the product ni nj represents the number of pairs, the 
product  v  ij may be seen as the probability (per single 

pair) that the given process i(j,k)l occurs.
R ij  v =n i⋅n j⋅v⋅ ij  v 

n i⋅n j=N i⋅N j  2
 

1 /2


3 / 2

K T 3/ 2⋅v 2
⋅e

−
 v 2

2 K T

Where Ni and Nj represent the total number densities of 
the two species, and m the reduced mass: =

 A i A j 

 AiA j 

The rate Rij may be therefore be written as: R i jv=N i⋅N j  2
 

1 /2


3 /2

K T 3/ 2⋅v 2
⋅e

−
 v 2

2 K T v  i jv 



  

Nuclear reaction rates

The rate Rij may be therefore be written as: R i jv=N i⋅N j  2
 

1 /2


3 /2

K T 3/ 2⋅v 2
⋅e

−
 v 2

2 K T v  i jv 

By integrating over the velocity distribution we get: R i j=N i⋅N j  2
 

1/ 2


3/ 2

 K T3 / 2⋅∫0

∞

v 2
⋅e

−
 v 2

2 K T v  i j v d v

By converting the velocity in energy, Rij becomes: R i j=N i⋅N j  8
  

1 /2 1

 K T3/ 2⋅∫0

∞

E⋅e
−

E
K T  i j E d E



  

Nuclear reaction rates

By converting the velocity in energy, Rij becomes: R i j=N i⋅N j  8
  

1 /2 1

 K T3/ 2⋅∫0

∞

E⋅e
−

E
K T  i j E d E

The cross section ij(E) may be written as the product of two parts:  i j  E=P C  E⋅S E 

PC(E) represents the probability that the two particles 
arrive at nuclear distance (10-15  cm). This problem has 

been address by George Gamow and hence it is 
usually know as the Gamow factor:

Tunnel effect

S(E) represents the probability that the compound nucleus decays in the desired channel k+l.
It is called the Astrophysical factor because it contains the nuclear properties of the process.

PC  E =
1
E
⋅e

−
4 2 Z i Z j e 2

h E

Coulomb repulsion 

R i jT =N i⋅N j  8
 

1/ 2 1

 K T3 / 2
⋅∫0

∞

E⋅e
−

E
K T 1

E
⋅e

−
4 

2Z i Z j e 2

hE S  Ed E

R i jT =N i⋅N j⋅AT ⋅∫0

∞

e−B T  E
⋅e

−
C i j

 E S E d E B(T) and Cij always positive! 



  

Nuclear reaction rates

Let us look at the integrand a little bit closer

R i jT =N i⋅N j⋅AT ⋅∫0

∞

e−B T  E
⋅ e

−
C i j

 E S  E d E B(T) and Cij always positive! 

This term goes to zero as
the energy goes to infinity

This term goes to zero as
the energy goes to zero

Energy (arbitrary units)

Gamow peak

Large probability of interaction 
but

very few pairs of particles

Many pairs of particles
but

low probability of interaction 

The astrophysical factor must be known only in a 
restricted energy range around the Gamow peak

There is one Gamow peak for each temperature T. 
Remember that the Energy of the Gamow peak

 is NOT
the energy related to the temperature T (i.e. KT)

The work of the Nuclear Astrophysicists consists
 in the experimental measure of the Astrophysical 

factors S(E) for as many processes as possible

EGamow  must not be confused with KT



  

Nuclear reaction rates

If we define, for simplicity:  v  i j T =∫0

∞

e−B T  E
⋅ e

−
C i j

E S E d E

The rate of a given process i(j,k)l, i.e. the number of 
interactions per unit time at temperature T is: R i jT =N i⋅N j⋅ v  i j T 

The total number of particles i per unit volume 
may be easily derived by means of the density 
  and its mass fraction abundance xi:

N i= xi⋅⋅
N A

Ai

Abundance in gr of the 
reactant i per unit volume 

Number of 
nuclei i per gr

y i=
x i

Ai

If we define y the number of particles i corresponding to the mass fraction:

If we define, for simplicity:

The rate R becomes: R i jT = y i⋅y j⋅
2⋅N A

2  v  i j T  # reactions cm -3  s - 1



  

Nuclear reaction rates

Nuclear Astrophysicists usually provide tables of: N A  v  i j T 

p  p , e
  D

14 N  p ,  1 5O

D p ,  3 H e

3 H e 3 H e, 2 p4 H e

3 H e 4 H e,  7 B e

7 L i p ,  
8 B e

7 B e p ,  8 B

R i jT = y i⋅y j⋅
2
⋅N A

2
 v  i j T 

Remember that the efficiency, the RATE, of a 
nuclear process is NOT determined by just the 
nuclear cross section, but by the full formula:

i.e. the abundances of the reactants i 
and j are fundamental too!



  

Intermediate –High mass stars:
Super - AGB

Electron capture supernovae

Massive stars:
Go through all burnings up to the Nuclear

Statistical Equilibrium

Intermediate-High mass stars:
Super – AGB

O,Ne,Mg white dwarfs

Low mass stars:
RGB

He white dwarfs

Intermediate mass stars:
AGB

CO white dwarfs

0.1 MO

Critical masses:

H ignition (4P => 4He)

0.5 MO
He ignition (off center, degenerate) (3 4He => 12 C)

2.3 MO
He ignition (central, not degenerate)

7 MO
C ignition (off center, degenerate) (2 12 C => 20 Ne+α)

8 MO
C ignition (central, not degenerate)

10 MO
All burnings up to the NSE
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