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Metal Poor Stars
® Frebel et al. 2006
®: Spite et al. 2006
# Acki el al. 2007
® Beers et al. 2007
# Cohen et al. 2006
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26A| Spectra along the Plane of the Galaxy

etal., A&A Vol. 496 (2009)
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Evidence

The prevents an easy fusion between charged particles: only a
combination of and NEVAEET
to a substantial amount of fusion.

Even the fusion of the lightest nuclei, protons, requires

T>several 10% K
p>several grams / cm®

to burn a significant amount of nuclei on a timescale
shorter than the age of the Universe



A star is formed by a gas cloud that contracts under its own gravity and
whose luminosity is produced in its interior

In many cases the contraction occurs on “long” timescales because matter naturally settles on a quasi equilibrium
configuration in which the various forces acting on each element of matter tend to counterbalance each other:

r+dr
Hydrostatic equilibrium:

dP  GMp

dr -2

Equation of continuity:

dM

Mass conserifation: —_— 4 TCV ’ p

7/



dP _ Gmp

i = 2 4mm Hydrostatic equilibrium
r

fd_f’idm__ [ ZHam

Gravitational potential energy

ik f Bl o dm Q Q may be regarded as the total amount of gravitational
energy liberated in the contraction from “infinity” to the
present configuration.
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dP Gmp

TN 4m Hydrostatic equilibrium
dr r

fd—PLdm——f —dm

Gravitational potential energy

i, f 3 dm_ _f L e dm_ Q Q may be regarded as the total amount of gravitational

energy liberated in the contraction from “infinity” to the
present configuration.

At this point we need an equation of state, i.e. a relation between pressure and density

Let us firstly consider a perfect gas; in this case we can write:

5
E=— NKT
2 2 B2
P=—F ‘ . Where u represents the
P=NKT 3 p 3 energy per unit mass

M W g
—f3§udm=.(2 -, —) fudm — 0 —2Ei=.Q
0 q



2E +0Q=0

What does it mean?

1 AQ is negative! hence a contraction implies necessarily
A E i SR> A Q an increase of the internal energy E. However only 50%
l 2 of the energy gained by the gravitational field remains

locked in the star, the other 50% must be lost!

What about the total energy of the system?

| | |
ET0T=Ei+'Q ET0T=_E‘Q+‘Q ET0T=5‘Q AET0T=5A.Q

Once again, Q is negative! Hence a contraction (AQ<0) implies a reduction of the total energy.
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Gravitational potential energy

i, f 3 dm_ _f L e dm_ Q Q may be regarded as the total amount of gravitational

energy liberated in the contraction from “infinity” to the
present configuration.

At this point we need an equation of state, i.e. a relation between pressure and density
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dP _ Gmp

e 2 4mm Hydrostatic equilibrium
dr .

Gravitational potential energy

A f 3 dm_ fod f e e dm_ Q may be regarded as the total amount of gravitational
energy liberated in the contraction from “infinity” to the

present configuration.

At this point we need an equation of state, i.e. a relation between pressure and density

In general we may write:

- ( y— 1) U Where vy is the ratio of the specific heats at constant pressure Cp and constant volume Cy

p

dQ| _|dU

——fe— = U=C,T

dr |, (dT . g .
‘T S au\ _lav P [dnv)| P InT

40) ¢ =[2U] o p| ¥ iec e
B_ =€ £= =13 For a monoatomic gas y = 5/3 so that we re - obtain £=(——1)U=—U
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dP Gmp

E ey 4m Hydrostatic equilibrium
e

Gravitational potential energy

A f 3 dm_ fod f e e dm_ Q may be regarded as the total amount of gravitational
energy liberated in the contraction from “infinity” to the

present configuration.

M
—f3(y—1)Udm=[2 3(y—1)E+0Q=0
0

4
y S g is very “special” because in this case Ei -I— Q — O A Ei = A Q

A E — A E _I_ A Q — A Q _|_ A Q == () For y=4/3 a contraction does not increase the
TO T_ i P o binding energy but leaves Etgr constant!



The second basic equation necessary to describe a stellar structure is
the one that controls the energy transport through the star.

Let us firstly assume that the energy is transported by radiation only:

The momentum (dq) transferred by a flux N of photons of frequency v per u_nit time is given by:

- dre
photons.4> "
o o 1
N(V)j.. A mean free path e
§ ° P
Mean number of interactions
d=N () asar=—5L grgsar
A 4R ¢

But, the momentum transferred may be also expressed dq= o dPr det= _% a d 7"4 det= _§ a T3 d Tdet

as the variation of the radiation pressure:

By equating the two:

4 5dT Lkp dT 3 aek
RPPLLERR L
3 dr 4 Rc dr lémac R*T




SUMMARIZING

The set of equations that describe the structure of a star is given by:

dP Gmp
e Hydrostatic equilibrium
dr 4 2

dM o o)

EEEm—— Mass conservation
dr b

daT _ 3 -F kil

Energy transport (radiative case

dr ~ 16act A

dL
dr

2z
=4 10 P € Energy conservation



but...

...we can try to be clever!



Perfect gas

E=_ 2 ‘ % 2‘POC_ POC’DT
= oM

2

Interesting!
Just the hydrostatic equilibrium + perfect gas imply
that the centre of a star must evolve along a straight
line in the Log(T¢)-Log(pc) plane.

radiation

What else?

The constant k scales inversely with the mass, so
that the density increases as the mass decreases
(for each fixed T)

electrons non relativistic
electrons relativistic

perfect gas

|V|1>|V|2>|V|3

We found that stars naturally separate in two
basic groups: stars less massive than a critical
value enter the region of electron degeneracy

Log,( p) while the more massive ones don't!




Y Perfect gas

dP _ Gmp P Mp Mp
- A ™ R s
1 >POC]\43,03 TR oc M
dM M\
d—=47[['2p - —oc R p ‘ROC i
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dT R) pL
drT o 3‘1{ RT3-T4R4°CML ‘LOCM3

What about the surface temperature of the star?

If we assume a black body: [ =4 1T R2 o T4ff
9

and also that
the central temperature is roughly
independent on the mass : R oC M

Loc M*

When the radiation
becomes important
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AP G P M u 3 Perfect gas

ar . siill P g PocpT
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What about the lifetime of the stars?
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We learned a lot of things up to now (without really solving any equation!)

If the EOS is dominated by a perfect gas:

hydrostatic equlibrium is “stable” because y (C,/Cy) > 4/3
the evolution of the core follows a straight line in the Log(T¢)-Log(p¢) plane

Star less massive than a critical value enter the region where degenerate electrons count

Star more massive than a critical value do not enter the region where degenerate
electrons count (at least until the central temperature does not exceed a few billions of K)

The energy losses from the surface (L) scale as M3

The lifetime of a star (t) scales as M-2

Unfortunately this is not enough ... it's time to introduce CONVECTION






adiabatic

din(T)
din(P)




adiabatic

din(T)
din(P)




din(T)
din(P)

radiative

Pcp T =const
Teddie< T2
radiative peddie> p2

EOP A,
por

(1)

i din(T
din(P)

The buoyancy force f~-—

is negative and pushes back the eddie



din(T)

din(P)

adiabatic




din(T)
din(P)

Teddie> TZ

radiative p eddie < p 2

radiative

(T)

din(T
~, me )

P 5 The eddie is accelerated outward.
Large scale motions activate.

The buoyancy force f N—g—i—pA I is now positive
por



Schwarzschild criterion!

din(1) 5
1 dln(P) radiative Pmp T _conSt
2 mod( anir))  eaie< T
dln(P) radiative peddie> p2
Teddie
M Teddie> T2
T mod
2 dln(P) radiative p ddi < p2
eddie
.

Both the temperature gradient and the:- mass extension of the
convective regions are very difficult to compute properly and still
constitute one of the major uncertainties in the stellar modelling.



Which are the basic consequences of the growth of convective motions?

Matter is mixed.
1¢ side effect: new fuel pulled inward — products of burning pushed outward

2™ side effect: change of the mean molecular weight in the whole convective region

The temperature gradient can't become steeper than the adiabatic
one in most of the interior of a star; only in the outer region it can

raise towards the radiative one because of the inefficiency of the
eddies in carrying the energy.



At this point we are ready to follow the evolution of a star, but...

...first a “stupid” question...

Why should a star “evolve”?
(i.e. change its structure as time goes by)

because...



...stars lose energy (e.g. from the surface: the Luminosity)

that must be replaced in order to mantain the hydrostatic equilibrium!

Energy may be gained by either:

(energy is extracted from the gravitational field)

Side effect => the interior heats (Virial theorem)

and / or

(energy is extracted from the fusion of nuclei)

Side effect => mean molecular weight increases (P decreases)



Hydrostatic
evolution

H-burning
He-burning
C-burning
Ne-burning
O-burning
Si-burning




Nuclear reaction rates

Let us define the cross section oj; of the nuclear _num beafrea ction(sparticlg')_l° s_l )
reaction between the particles i and j, that has the Uij_ o cm
exit channel k + 1, as: fluxof particlas
The total number of reactions between the subset of =1 =1
particles i and j that have relative velocity v is given by: Rii( V)— n;:v:-n ioii( V) numbes -cm
Where n; and n; represent the number densities of the two nuclear species having relative velocity v.
Since the product n; n; represents the number of pairs, the
product v ¢;; may be seen as the probability (per single Rij( V)= nl.-nj-
pair) that the given process i(j,k)l occurs.
2
If both the i and j components of the gas behave as an “ideal” 2 o ”3/2 B “Z%T
gas, their velocity distribution is Maxwellian. As a consequence I1;*ll ;= N,-' Nj o] el T A 4
also their relative velocity distribution is Maxwellian : T (K T)
Where N; and N; represent the total number densities of (A A )
. ey "]
the two species, and m the reduced mass: H=
(4;+4,))
; Y ) v
The rate R;; may be therefore be written as: Ri'(v) =N-N/|= u—m phe KT, 0',-~(V)
J N1 (K T) i)



Nuclear reaction rates

2

2 1/2 32 s
The rate R; may be therefore be written as: — ' s 2KT
(KT)
5\ 12 5 T vt
= 2KT
By integrating over the velocity distribution we get: Rij—Ni'Nj E (KT)3/2'_‘.0 Ve Y O-ij( v) dv
8 112 1 w s Cills
; i : = KT
By converting the velocity in energy, R; becomes: Rij_Nion 32 E-e O'ij(E)dE
| (KT)'* 0




Nuclear reaction rates

1/2 E
1. o R
: [, Ee o,(E)dE

By converting the velocity in energy, R;j becomes: Ri]-=Nl-'Nj U (KT)3/2 ‘

The cross section ¢j;(E) may be written as the product of two parts: O'ij( E) - C( E) .S (E)

Pc(E) represents the probability that the two particles
arrive at nuclear distance (10-15 cm). This problem has
been address by George Gamow and hence it is PC(E)= e
usually know as the Gamow factor:

am’Z,Z,e
hyE

Coulomb repulsion

S(E) represents the probability that the compound nucleus decays in the desired channel k+l.
It is called the Astrophysical factor because it contains the nuclear properties of the process.

2 2
E dn'Z . Ze

1/2 B 3 g
R (T)=N:N, ! . [, Ee ™ ¢ " S(E)E
J] J mH (KT)3/2 ]

; o P IE S HE ORI B(T) and Cj always positive!



Nuclear reaction rates

Let us look at the integrand a little bit closer

Rij(T)= Ni.]\lj.A(T).j00 et ) e_‘/E S(E) dE  B(T) and C; a.Iways positive!

Many pairs of particles
but
low probability of interaction

Large probability of interaction
but
very few pairs of particles

Gamow peak iy

Ecamow Must not be confused with KT

The astrophysical factor must be known only in a
restricted energy range around the Gamow peak

There is one Gamow peak for each temperature T.
Remember that the Energy of the Gamow peak
is NOT
the energy related to the temperature T (i.e. KT)

The work of the Nuclear Astrophysicists consists
in the experimental measure of the Astrophysical
factors S(E) for as many processes as possible



Nuclear reaction rates

00

If we define, for simplicity: <ov >l-j( T) =~[0

The rate of a given process i(j,k)l, i.e. the number of =
interactions per unit time at temperature T is: Rij( T)_ N;: Nj' <oV >ij(T)

The total number of particles i per unit volume
may be easily derived by means of the density N = X208
p and its mass fraction abundance Xx;:

Abundance in gr of the Number of
reactant i per unit volume nuclei i per gr

X
If we define y the number of particles i corresponding to the mass fraction: ), =j

i

e " . ¢ E S(E)dE

The rate R becomes: R,-j(T)= y,-°yj-p2-Nf4<0 y >,-j(T) # reactions cm 3 s -1



Nuclear reaction rates

Nuclear Astrophysicists usually provide tables of: [N <OV >l.j(T)

Remember that the efficiency, the RATE, of a
nuclear process is NOT determined by just the
nuclear cross section, but by the full formula:

Rij(T)=.Vi°yj°P2'Ni1<0'v>ij(T)

i.e. the abundances of the reactants i
and j are fundamental too!

Log(Ns<av>y)




H ignition (4P => ‘He) - : :
OwW Imass stars.

: RGB
He ignition (off center, degenerate) (3 ‘He ’-_'*55"3”"(3) : He white dwarfs

He ignition (central, not degenerate) 2 3 M
! _ " o

C ignition (off center, degenerate) (2 2C =>?Ne+0)

Intemediate-Hh mass stars:
Super — AGB
White dyvarfs

C ignition (central, not degenerate)

Super - AGB g e
All burnings up to the NSE Electron capture sup ernovaa, e
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